报告题目:Maximum Conditional Entropy Hamiltonian Monte Carlo Sampler
报告时间:2021年3月19日19:00
腾讯会议信息:
会议时间:2021/03/19 19:00-20:30 (GMT+08:00) 中国标准时间 - 北京
点击链接入会,或添加至会议列表://meeting.tencent.com/s/XdYi2C8b4U63
会议 ID:701 393 947
报告摘要:
The performance of Hamiltonian Monte Carlo (HMC) sampler depends critically on some algorithm parameters such as the total integration time and the numerical integration stepsize. The parameter tuning is particularly challenging when the mass matrix of the HMC sampler is adapted. We propose in this work a Kolmogorov-Sinai entropy (KSE) based design criterion to optimize these algorithm parameters, which can avoid some potential issues in the often used jumping-distance based measures. For near-Gaussian distributions, we are able to derive the optimal algorithm parameters with respect to the KSE criterion analytically. As a byproduct the KSE criterion also provides a theoretical justification for the need to adapt the mass matrix in HMC sampler. Based on the results, we propose an adaptive HMC algorithm, and we then demonstrate the performance of the proposed algorithm with numerical examples.
报告人简介:
2007年博士毕业于纽约州立大学布法罗分校。2007年至2019年在美国西北大学、2010年至2012年在麻省理工学院进行博士后研究。2012年至2017年聘为上海交通大学副教授,2017年至2020年受聘于英国利物浦大学,随后于2020年聘为英国伯明翰大学教授。研究方向集中于科学计算,统计计算,不确定性量化等理论及其在工程问题中的应用,至今在SIAM Journal on Scientific Computing, SIAM Journal on Applied Mathematics, Inverse Problems, Physical Review Letters, Journal of Computational Physics等国际著名杂志发表论文三十余篇。